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A B S T R A C T  

For the selfadjoint Schr6dinger operator --A -- c~V on l:t 2 the number of 
negative eigenvalues is estimated. The estimates obtained are based upon a 
new result on the weighted L2-approximation of functions from the Sobolev 
spaces in the cases corresponding to the critical exponent in the embedding 
theorem. 

0. Introduct ion  

This paper  is devoted to the analysis of two closely related problems. The first one 

is the problem of the weighted L2- approximat ion of functions from the Sobolev 

space H~(Q) by means of piecewise-polynomial functions; here Q is the unit  cube 

in ]R d and the crucial point is tha t  we are dealing with the case 2g = d. T h e  

main aim here is to obtain uniform estimates of approximat ion with respect to 

the widest class of weights allowed by the embedding theorems. Such a problem 

was investigated earlier in [BS1], [R1], [R2] for the cases 2e > d, 2t? < d (see also 

a unified exposition in [BS2]). The sharp version of the embedding theorem for 

2~ = d involves some Orlicz spaces and it is not  quite clear how to extend the 

approach proposed in the above papers to this case. This difficulty is precisely 

what  is overcome here. We introduce a new (equivalent) norm in the Orlicz spaces 

L,~(E), E C ~ d ,  in such a way tha t  it satisfies some'nice invariance properties 

with respect to scaling. Using this norm one can adapt  the approach of [R1], 
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[R2] to the case of Orlicz spaces. The main result on approximations, Theorem 

1, is proved in Section 1. 

The second problem considered concerns estimates on the number of the nega- 

tive eigenvalues of the SchrSdinger operator - A  - a V  on ~2.  We are interested 

in estimates sharp in a, a ~ oo, and as far as possible, also in function classes 

for V. A general scheme of applying piecewise-polynomial approximation to such 

problems was developed long ago by Birman and the author; its detailed expo- 

sition was given in [BS2]. Sharp estimates of the desired type are known for 

d _> 3 (the so-called Rozenblum-Cwikel-Lieb estimate, see [R1], [R2], [C], [L1], 

[L2], [L3], and also expositions in [BS2], [$2], [RS]) and for d -- 1 ([BB], [BS3]). 

Theorem 1 allows us to get satisfactory results also for d = 2. The former results 

for d = 2 [BB] were rather incomplete because they were based upon a much 

more restrictive result from [BS1] than the one given by Theorem 1. 

The material concerning these estimates is presented in Sections 2 and 3. In 

order to avoid making this paper too long, we restrict ourselves to the investi- 

gation of the SchrSdinger operator only. Correspondingly, we deal only with the 

simplest case 2g = d = 2 of Theorem 1. 

The concluding Section 4 contains a detailed commentary and discussion of 

the results obtained. 

ACKNOWLEDGEMENT: The author would like to thank D.E. Edmunds and 

V. Liskevich for helpful discussions. 

1. M a i n  r e su l t  on  a p p r o x i m a t i o n s  

1. Here we consider the approximation of functions u E He(Q), where Q = 

Qd _ (0, 1) d, 2~ --- d, by means of piecewise-polynomial functions. The con- 

struction of the approximating function is related to an appropriate choice of a 

covering E of Q by parallelepipeds A c ]R d. We always consider parallelepipeds 

/~ C ~:~d (as a rule, cubes) with the edges parallel to the ones of Q. 

We now introduce some notations. By P(g, d) we denote the linear space 

of all polynomials of degree < g in ~t d, by m(g, d) - its dimension. For any 

parallelepiped A C ~:~d we can regard P(g, d) as a subspace in L2(A); let PA,e be 

the corresponding orthogonal projection. 

Furthermore, let E be a finite covering of Q by parallelepipeds A C Q. To any 

such covering and any ~ > 0 we associate an operator of piecewise-polynomial 
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approximation. Namely, we enumerate the parallelepipeds A E ~ in some way, 

= {Aj}, 1 < j < card(m). Denote by Xj the characteristic function of the set 

A j \  Ui<j A~. The approximation operator mentioned is 

(1) K=_,e = ~ )ljPaj,e . 
J 

Evidently, 

(2) rank K~.,~ < m(~, d)card(~) . 

We need also some knowledge in Orlicz spaces (see [KR] and [A], Chapter VIII). 

Let (I), ko be mutually complementary N-functions, L¢(E) ,  L,~(E) be the corre- 

sponding Orlicz spaces on a set E C ~d  of finite Lebesgue measure IEI. Along 

with the classical Orlicz norm on L,~(E) 

(3) Ilvll~,~ = sup{I/E vIdxl: fE ~(/(x))dx <_ 1}, 

we introduce the "average Orlicz norm" 

(4) v ~,E = sup{l vldxl: ¢ ( l ( x ) ) d x  _< IEI} .  

The norms (3) and (4) are mutually equivalent but the coefficients in the cor- 
(av) 

responding two-sided inequality depend on IEI. Clearly v ~,E = llvll,~,~ when 

IEI = 1. In fact we only need the pair 

. 4 ( t )  = e I t l  - 1 - It l ,  t ~ ( t )  = (1  + I t l ) e n ( 1  + ltl) - It l ,  

but the auxiliary results obtained below for the general case may be of some 

independent interest. 

We are now in a position to formulate our main result on approximations. In 

what follows 

: =  

H=e 

We denote by Cn the constants which are repeated; number n indicates the 

formula where this constant first appears. 



256 M. SOLOMYAK Isr. J. Math .  

THEOREM 1: Let Q = (0, 1) d, V • LB(Q), V > O. Then for any n • ~q there 

exists a covering E = E(V, n) of Q by parallelepipeds A C Q such that 

(5) card(E) _< Chn 

and for any function u • He(Q), 22 = d, we have 

(6)  /Q V]u- KE,eul2dx <_ C6n-I[Iv[II3,Q /Q [Veu]2dx 

where KE,t is the operator introduced by (1). The constants C5, C6 depend only 

on d (but not on V).  

In order to prove the Theorem, we need some more information on Orlicz 

spaces and on coverings. This information is collected in Subsection 2. 

2. The norm (4) is, in a sense, invariant with respect to scaling: 

LEMMA 1: Let ~ be an aff/ne transformation of JR d and E¢ = ( (E) .  Then for 

any N-function ~2 and any v • Le (E ( )  

~-II (av) --1 (av) 
(7) I E l - l l ) v  = )Eel IIvlI ,E, • 

We omit the proof consisting of a standard change of variables in both integrals 

in (4). 

The well-known embedding theorem concerning the Sobolev space with the 

critical exponent (see [A], Theorem 8.25) will be used in the sequel. For the case 

E = Q it can be written in the following form. 

PROPOSITION 1: There exists a constant Cs(d) such that for every u • He(Q), 

Q = (0,1) d, 24 = 

(8) II  llA,q ___ Csll ll ,(Q/. 

On the subspace Ker  PQ,t of He(Q) the norm [[U[[H~ is equivalent to [[Vtu[lz2. 

It follows from this and from (8) that, with some other constant factor, 

(9) llu2ll ,  _< C9(d) /q  IVtul2dx, u • He(Q) , PQ,eu = o ,  2e = d .  

Combining this estimate with Lemma 1, we obtain the following useful result. 
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LEMMA 2: Let A C ]R d be a parallelepiped with edges of length h i , . . . ,  hd and 
u E He(A),  2e = d, PA,eU = O. Then for any non-negative function V E Lu(A) 

(10) /A Vtul2dx <- Cg(d)max ( h-~j ) d /A 

Proof: If A = Q, then (10) is a direct consequence of the HS]der inequality for 

Orlicz spaces (see [KR], Theorem 9.3) and of (9): 

oVlul2dx <_ IIVlI~,oIlu211A,Q <<_ C9(d)llVll~,Q fq IVeul2dx. 

For an arbi trary A C N d  let ~ be an affine transformation of ffid such that 

( (Q)  = A. If u E He(A),  then u o ~ C He(Q) and, due to the condition 2e = d, 

(11) IV~(u o ~)12dx < max IVeul2dx. 

Besides, PQ,e(u o [) = 0 provided PAeu = 0. By (9) and (11), 

S Vluledx=lzXlfeVoduod2dx 
< IzXlllVo~llB,o IVeul 2dx , 

%3 

Taking into account (7), we see that  this coincides with the required inequality 

(10). II 

Note that  for the case of cubes, the inequality (11) turns into equality. More- 

over, for any homothety transformation ( and for any region E C Nd we have 

(12) [ IVe(~o~)12dx=[  IVeul2dx, V~cH'(~(E)), 2e=d. 
JE J~ (E) 

Now we return again to the case of an arbitrary N-function 9.  For a fixed 

v 6 Lq(E), we will investigate some properties of the quantity 

(13) if(e) = ff,,~,(e) = v v,e 

as a function of measurable sets e C E. 
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LEMMA 3: The function (13) is superadditive, i.e., for any e C E and any finite 
system of mutually disjoint subsets ej C e 

s(ej)  < s(e). 
J 

Proof'. Let ¢ be the N-function complementary to ~. With any function f j  on 

ej satisfying the inequality 

/ ¢(fj(x))dx < levi (14) 
,]e 

we associate the function Fj on e: Fj = f j  on ej, Fj = 0 on e\ej .  Then for 

F:EF  
J 

(15) 

we have 

(16) fe d~(F(x))dx= ~j. f~ O(fj(x))dx < Z lejl H. 

At the same time 

It follows from (14), (16), (17) and from the definition (4) that 

(ov) i /, v ~,~ = sup{[ v(x)F(x)dx[: ~(F(x))dx <_ lel} 

sup{J .~. v(x)F(x)dxl: F of the form (15)} _> 

J 

Let us suppose now that  • satisfies the A2-condition (see [KR], §4). For this 

case and for E = Q we can prove that the function fl~,, is, in a sense, continuous. 

Recall that  the class C(Q) is dense in L,(Q) for any such V (see [A], Theorem 

8.20). 
For a given point x E Q and t > 0, let Ax(t) be the cube centered in x, 

with the edges of length t. Denote/~x(t) = A~(t) n Q and consider the function 

j(t) = ,7~, v ( ~ ( t ) ) ,  t > 0. It is clear that  for every x E Q, j(t) is a non-decreasing 

function and j(t) = ff~,,,(Q) for t > 2. 
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LEMMA 4: Suppose that the A2-condition is satisfied for 9.  Then j ( t )  is con- 

tinuous and j(O+) = O. 

Proof: For a given to, t > O, let ~to,t be an affine transformation of ~ d  such 

that ~t0,t(/~(t0)) = ~x~(t). Then by (7) 

Ihx(t ) l  Ilvo  ,,(or) 
(18) j ( t ) -  I ~ l  qto,tll,i,,£.(to)" 

If v E C(Q), then v o ~ to , t  ' +  V uniformly on /~x(to) as t ~ to. Therefore 

/ £  ~(v(~to,t(x)) - v(x))dx ) 0 
.(to) 

and, because of the A2-condition for 9 ,  

(19) IIv o 6o,t  - (,o) , 0  

([KR], Theorem 9.4). By continuity, (19) remains valid for any v E L~(Q). It 

follows that  IIv o c ~,to,tll¢,£~(to) , [[v[[ ~(to) as t --* to and it is clear from (18) 

that j ( t )  --~ j(to). 

The property j (+0)  = 0 is a straightforward consequence of the absolute con- 

tinuity of the norm in L¢,  see [KR], Theorem 10.3. | 

We will use the Besicovitch covering lemma when proving Theorem 1. To 

formulate it, we need a notion of the "linkage" of a covering E of (~ by cubes 

A C ~t a. Suppose that  E can be split into r subsets E l , . . . ,  E.  in such a way 

that for each k = 1 , . . . ,  r the cubes A E Ek are pairwise disjoint. The smallest 

number r for which such a partit ion of E is possible is called the linkage of E 

and denoted by link(E). 

PROPOSITION 2 (Besicovitch covering lemma; see [G], Theorem 1.1): Let/'or any 

point x E O = [0, 1] d, a closed cube A~ C Ft d centered in x, be given. Then a 

subset E = {A~j} can be chosen in such a way that Ui Ax ~ D O and link(E) < rd 

where rd is a number depending only on the dimension d. 

3. PROOF OF THEOREM 1.. In the course of the proof if(e)  is the function 

(13) corresponding to g / =  B and v = V. Note that the A2-condition is satisfied 

for B. We can normalize V assuming i f (Q) = IIVIIB,Q = 1. 

Fix n E ~ and for each x E O find a cube Az centered in x such that  

[ [ V l [ ~ . n  Q = n -1. The existence of such a cube follows from Lemma 4. Let 
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E be the covering of (~ selected according to Proposition 2, and E = UkEk, 

1 <_ k <_ link(E), be any partition of E appearing in the definition of linkage. 

Then, by the superadditivity of ,7 (Lemma 3) 

n-lcard(Ek) = E ,7(A M Q) < ,7(Q) = 1, 
AE~k 

hence 

(20) card(E) <_ n link(E) <_ nrd. 

The parallelepipeds /~ = A M Q, A E E, constitute a covering ~, of Q. If hi, 

i = 1, , d, are the lengths of the edges of/~ E ~ then maxi,j h~ < 2 (because 
" ' "  ' h j  - -  

A is centered in x E Q). 

Let K~.,e be the approximation operator given by (1). Then, by (2) and (20), 

(21) rank K~.,e < nm(g, d)rd. 

For any u E He(Q) we evidently have 

(22) iQ V iu -  K~.,~ui2dx < ~ i£ V ia -  P£,eui2dx. 
AE =_ 

We can apply the estimate (10) to every summand of the last sum because 

Ph,e(u - Ph,eu) = 0 and get 

,~f- via-  K=..,,~,I~,~x _< 2 %  E_ _ ,7(A)£ IV'"l ~<tx 

-< 2dCgn-1 -~- iZ, lVe"l~d~ 

= 2dCgn-1 Ek ~ oQ - 

This coincides with the conclusion of Theorem 1, with C5 = r d  and 6 6  = 2 d C 9 r d  • 

I 
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2. A p p l i c a t i o n s  to  t h e  s p e c t r a l  t h e o r y  

261 

1. As was mentioned in the Introduction, we restrict ourselves here to the case 

o f f  = 1, d =  2. Note that m(1,2) = 1. The main object we deal with is the 

Schr5dinger operator in L2(P0) 

(23) Aav = - A  - c~V, 

with a non-negative potential V and coupling constant c~ > 0. By definition, 

A~v is the self-adjoint operator in L2(~:{2), associated with the quadratic form 

aov[u] =/(,vu,2 _ ~Vlul2)dx (24) 

(here and in the sequel f := f~2). It will follow from our assumptions on V 

that a~y is bounded from below and closed on the domain HI(IR 2) and that the 

negative spectrum of the corresponding operator A~v is discrete. 

Recall the definitions of the spectrum distribution functions for unbounded 

and for compact operators in a Hilbert space. Suppose that the spectrum of a 

selfadjoint operator A to the left of a given point ~ ¢ ~ is discrete. Then, by 

definition, 

N(A; A) = card{j: Aj(A) < A}, 

where Aj(A) are the eigenvalues of A counted according to their multiplicities. 

Quite similarly, for a compact, non-negative symmetric operator T, 

n(A;T) := N ( - A , - T )  = card{j: Aj(T) > A} , ~ > 0. 

Our main goal is to get some estimates of the quantity N ( - 7 ;  A~v) for the op- 

erator (23) and 7 -> 0. The estimates for 7 > 0 and for 7 = 0 look quite different, 

the latter one being much more involved. We now formulate the corresponding 

statements. 

For any h > 0, let {Qk(h)}, k E ~2, be the lattice of squares in ]R 2 with edges 

of length h. We write Qk instead of Qk(1). Q without an index denotes the 

standard unit square. 

THEOREM 2: Let V C L~,loc(~:{ 2) and suppose that the series ~-~.kcz~ []V]I~,Qk 

converges. Then for any a > 0 the quadratic form (24) is bounded from below 
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and closed on H 1(P2), the negative spectrum of the corresponding operator (23) 

is discrete and for any 7 > 0 the [ollowing estimate is valid: 

(25) N ( - 7 ,  Ao, v) <_ c=~,~ ~ ,  IIVll~t._½). 
k E Z  ~ 

To formulate the result for 7 = 0, we need some additional notations. Introduce 

two different partitions of P~: 

lq,2 = U ai  = U Oi 
~_>o i_>o 

where 

(26) 
ao = {x: I=1-< 1}, l ] i =  {x: 2 i-1 _< Ixl _< 2i}, i • 1N ; 

Oo = {x: Ixl _< e}, eh = {x: 2 i -~ _< enlxl <_ 2'} ,  i • ~ .  

To a given potential V, we correspond two numerical sequences, #(V) = {#i (V)}, 

~(v )  = {~ , (v )} ,  i > o: 

(27) 

(2s) 

Note that  

(29) 

. , ( v )  = Itvll  ,, 

v~(V) = Je[, V(x)ltnlxlldx " 

,,o(v) < #o(V) + re(v) + ~ ( v ) .  

Indeed, it is easy to check that f~, A(gnlxl)dx < lad for i = 0, 1, 2, and (29) 

follows from the definition (4), due to the inclusion Oi C ~2o U S21 U ~22. 

In fact each term vi(V) can be estimated by ~-]d #j(V), where summation 

extends over all j such that Oi n ~2j ¢ 0, but with a constant factor depending 

on i. 

Recall that a sequence 7/ = {~/i} belongs to the "weak gt-space" el,~ if the 

following quantity (the quasinorm of ~) is finite: 

Ilnlll,~ = sup(8 card{i: In~l > s)).  
s>O 

It is well known that 21 C gl,~ and 

(30) I1~111,,~ < I1~111. 
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THEOREM 3: Let V • LB,lo¢(Ft 2) and #(V) • ~1, v(V) • ~l,w. Then for any 

a > 0 the quadratic form (24) is bounded from below and closed on H1(~2) ,  the 

negative spectrum of the corresponding operator (23) is finite and the following 

estimate is valid: 

(31) N(O;A~v) < 1 + c 3 , ~ ( l l ~ ( V ) l l ~  + • 

Note that  neither of the terms appearing in (31) can be estimated by the other 

one. The estimate (31) looks rather inconvenient because of the presence of two 

dissimilar terms on its right hand side. The following estimate which follows from 

(31) and (30) may turn out to be more efficient: 

(32) Y(0; A~v) < 1 + C31a(Ilp(V)[I1 + f V(x)lgnlxlldx ). 

2. The rest of the paper is devoted to the proof of Theorems 2 and 3. First, we 

derive some spectrum estimates for operators associated with a class of variational 

problems. 

Let ~ C_ ~2  be a region. On the space H I ( ~ )  endowed with the standard 

Sobolev norm, we consider the quadratic functional 

(33) b~,v[u] = f~ Vlul2dx, 

where V is a given measurable non-negative function on ~. If bn,v is bounded 

on HI (~ ) ,  then it generates a bounded self-adjoint, non-negative operator - say 

T~,v - in this space. Recall that,  by definition, for a given f E HI (~ ) ,  

u = Tn,v f  ~=~u • HI(~) ; 

/ f ( V u . V ~ + u ~ ) d x = / ~ V f ~ d x ,  Vv • Hl(f~) . 

Under some assumptions on F/and V, the operator Tn,v turns out to be compact 

and we are interested in the behavior of the distribution function n(A; Ta,v) as 

A --* +0. 

THEOREM 4: Let ~ C ~ be a bounded region with a Lipschitzian boundary 

and V E LB(~). Then the operator Tn,v is compact and there exists a constant 

Cs4(~) such that for any A > 0 

(34) n(A; Tn,v) < C34(f/)IlVHB,r~A - I  • 
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Proof'. What  we give below is quite standard. In fact, it almost coincides with 

the proof of Theorem 4.1 from [BS2] for the case 22 = d = 2. The only but 

decisive distinction is that  we are now in a position to apply Theorem 1 instead 

of a less precise statement used in [BS2]. 

Let Q c ]R 2 be a square such that  ~ C Q. We can regard Q as a unit square. 

Let V be the function on Q equal V on ~ and V = 0 otherwise. Fix a bounded 

linear extension operator II: H i ( ~ )  ~ Hi(Q). Using the Hhlder inequality for 

the spaces Lx(Q), L6(Q) and the estimate (8), we get for any u E H I ( ~ )  and 

U = Hu: 

/~ Vlul ~dx = / q  V'lUI 2dx < IlPll~,ellU211.A,q 

<_ CsllVll~,~llUIl~,(e) <_ Csllnll~llVll~,nlMl~,(r~l • 

Thus Tn.v is bounded and 

(35)  n(A;Tr~,v) = 0 for A > Csllnll211VllB,~. 

Now fix A E (0, A0], where A0 = c611nll211Vllu,n. Let n be the minimal integer 

such that  nA > A0. For this n and the function V, let E be the covering of Q 

constructed in Theorem 1 and K~ = K~.l be the corresponding operator (1). 

For the subspace 9 ~ = Ker(K=II) of H l ( ~ )  

codim ~" < rank K=_ <_ r2n. 

For u E jc, the following inequality holds: 

/ V,u,2dx = /Q V,U - K~U,2dx <_ C6n-lllV,,Ia,Q /Q ,VUI2dx 

It  follows that  Tn.v is compact and, by the variational principle, 

(36) n(A;Ta.v)<codim:7:<_r2n<r2(~+l)<_2r2~, A<_Ao. 

The required estimate (34), with C34 = 2r2]]IIl[ 2 max(C6, Cs), is a direct conse- 

quence of (35) and (36). | 



Vol. 86, 1994 P IECEWISE-POLYNOMIAL AP P ROXI MATI ON 265 

Consider now the subspace 

/:/1([2) = {u 6 H ' (~ ) :  J udx = 0}. 

We equip /:/1(~/) with the norm IIVU[IL 2 which is equivalent on this subspace 

to the standard norm IlU]lH~. Let Tr~,v be the selfadjoint operator in /:/1(~) 

generated by the same quadratic functional (33). For T~,v the estimate (34) 

clearly remains true, in general with some other constant factor. A significant 

difference between the estimates for T~,v and T~,v is expressed by the following 

statement. 

THEOREM 4': Under the assumptions of Theorem 4, 

(37) _< - '  , w > o.  

/ f  f/', f]" are homothetic regions, then 

(38) c , 7 ( a ' )  = 

Proof: We only need to check (38). For this aim, it suffices to use the scaling 

x ~ hx and to take into account the invariance properties (12) of IIVUIIL2 and 

(7) of the norm (4). | 

3. Here the case of ~ = ~2 is considered. Theorems 4 and 4' have no direct 

analogues in this case, but it is easy to derive some eigenvalue estimates using 

suitable partitions of ]R 2 into a collection of bounded regions. 

The statement given below is a consequence of Theorem 4. A similar conse- 

quence of Theorem 4' will be stated in §3. 

COROLLARY 1: Let V 6 Lt3joc(]R 2) and suppose that the series ~kez2  [[V[[s,Q~ 

converges, Then the operator T~t2,v is compact and 

n(,~; T ~ v )  < 634(Q)A -1 ~ IIVIIB,Q~ , A > 0. 
kCZ ~ 

Proo~ By the variational principle, 

kcZ  2 

It remains to apply Theorem 4 to each term of the last sum. | 
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4. Theorem 2 can be easily reduced to Corollary 1 with the help of the well 

known "Birman-Schwinger principle". Its general operator-theoretic formulation 

was proposed by Birman [B]. In connection with Proposition 3 given below, see 

[B], Theorem 1.4, or an exposition in [BS3], §1. 

Let a[u] be a positive (a[u] > 0 for u ~ 0) and closed quadratic form in a 

Hilbert space 7-/, with the dense domain d = d[a]. Let b[u] be another non- 

negative quadratic form subject to the condition 

(39) b[u] < Ca[u] , u • d. 

Consider a new Hilbert space d - the completion of d in the a-metric a[u]. It  

follows from (39) that  b can be extended by continuity to the whole of d. The 

extended form defines on d a bounded selfadjoint and non-negative operator - 

say B. 

PROPOSITION 3: Suppose that (39) is satisfied and the operator B is compact 

in el. Then for any a > 0 the quadratic form 

as[u] = a[u] - ab[u] , u • d ,  

is bounded from below and dosed in 7-/. For the self-adjoint operator As associ- 

ated with this form, the negative spectrum is finite and 

(40) N(0; As) -- n(o~ -1, B). 

P roof  of Theorem 2: For the leading case 7 = 1, (25), with C25 = C34(Q), is a 

straightforward consequence of Corollary 1 and of the identity 

N ( - 1 ,  A~v) = n(a -1, T ~ , v )  , Va > O. 

In turn, this identity is nothing but a specific case of (40): we have to take 

f ( i w l  + 1 12)dx, a = d = n ' ( W ) ,  = f Vl l dx. a[u] 

1 
Then we pass on from "y = 1 to any ~ > 0 with the help of scaling x H ~/~x. 

| 

In fact we were dealing with a very simple case when proving Theorem 2. It  

would be easy here to give a direct proof avoiding formal references to Proposition 

3. The case of "y = 0 considered in the next section is much more delicate. 
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1. To prove Theorem 3, we need some new objects. First, consider some Hilbert 

function spaces on ~2. Sometimes we use the "naive" notation f (x)  = f(r,  ~), 

where r, ~ are the polar coordinates on ~2. Let 

1 ~0 21r ira(r) = ~ f(r, ~)e-~m~d~ , m • ~q, 

be the Fourier coefficients of f with respect to the ~-variable. With the help of 

the Fourier series 

f ix)  -- f (r ,~)  = E ]m(r)e'm~ 
rnEZ 

we introduce the following subspaces of L2(~ 2) and of H1(~2): 

(41) F o = { f • L 2 : f ( x ) = j ~ ( r ) } ,  F ~ = { f • L 2 : f o ( r ) = 0 } ,  

(42) G 0 = { f • H l : f ( x ) = j ~ ( r ) } ,  G, = { f • H l : j ~ ( r ) = 0 } .  

It is clear that these subspaces are closed, Gi is dense in Fi (i = 0, 1) and that 

the decompositions 

L2(~:~ 2) = F0 (~ F1 , H I ( ~  2) = G0 (~ G1 

are orthogonal with respect to the corresponding scalar products. The following 

Hardy-type inequality is valid on GI: 

+ m 2 ~ ) r d r  
m#O ~+ 

(43) 
f fm drf 2dx >_ 2~r ~_, I i T = Ifl - ~  , f • G1. 

m~£O + 

Denote by ~1 the completion of G1 in the metric generated by f l~Tfl2dx. It 

follows from (43) that G1 is a function space embedded into the weighted space 

L2(]R2; Ixl-2). Note that the completion of Go in the metric f IVfl2dx can not 

be realized as a function space on ~t 2. 

Denote by a (~) i = 0, 1, the restriction on G~ of the quadratic form given by ~ V '  

.(0 Writing (24), and by A(i)~v, the self-adjoint operator in Fi associated with -~y" 

f = f0 + fl ,  where f • H1(~2), fo • Go, fl • G1, we get 

(44) / vlfl2dx <_ 2 f Vlfol2dx + 2 f Vlfll2dz. 
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It follows from (44) by the standard variational arguments that 

(45) N(0; A,~v) < N(0; A (°) ~ N(0;A (1) ~ 
- -  2 a V  ] -}- 2 ~ V  I"  

Thus it is sufficient to examine the operators 4(0) 4(1) 

2. It is convenient for us to consider A (1) first. aV 

Keeping in mind that we intend to apply Proposition 3, we introduce the self- 

adjoint operator Sv in GI, generated by the quadratic functional f VIfI2dx. In 

the following statement the notations ~{, #(V) = {gi(V)} from (26) and (27) 

are used. 

COROLLARY 1' (of Theorem 4'): Let V E LB,loc(]R 2) and #(V) E ~1. Then the 
operator Sv is compact and 

(46) n(A;Sv) "( C46)~-1II] - t (V)[[1  , C46 = max(C37(gto), C37(Y/1). 

Proof: The proof is quite similar to the one of Corollary 1. By the variational 

principle, 

n(A; Sv) ~_ E n(A; :Fa,,y)- 
i>o 

(Note that here we not only eliminate the compatibility conditions on 0 ~  for the 

functions from 61 but also replace ~1 ]a, by the much wider spaces/:/l(fli).) Now 

(46) follows from Theorem 4'. | 

Applying Proposition 3 (with a[u] = f IVui2dx, d = G1, cl = G1, b[u] = 
f Vluf2dx) we conclude that the form a(1)~v is bounded from below and closed in 

F1. By (40) and (46), 

(47) N(O; A(~  ) <_ C45aIIp(V)]]l. 

3. It remains to estimate N(0; A(~). This problem can be reduced to the one 

of estimating the number of negative eigenvalues for a SchrSdinger operator on 

the axis ~ .  

After the standard substitution r = e t, u(x) = rio(r) -- g(t) we get 

]Vul2dx = 27r / ~  ]g'(t)i2dt , Iui2dx = 2~ ~ Ig(t)i2e2tdt , 
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Vlul2dx =2~r /~  Wv (t)Ig(t)12dr , 

(48) 
e 2t f 0  2~r where Wv(t) = 

This substitution maps Go onto the space 

X = (g: / (tg'l 2 + e2tlgl2)dt < c~}. 

For u • Go we have a~y[u] = 2ra~wv[g], where 

(49) a~wv [g] = f ([g'l 2 - aWv Ig[2)dt. 
JR 

V(e t, ¢y)d~ . 

269 

Denote by A~wv the self-adjoint operator in the weighted space L2(~t; e2t), as- 

sociated with the quadratic form (49). It follows from the definition that A~wv 
is unitarily equivalent to (2Tra-lA (°) ', ] otY" 

If we replace L2(]R; e 2t) by L~(]R) in the above definition, then we get a 

Schrhdinger operator -g"  - aWyg in L2(~t). A scale of estimates of N(0, .)  

for such operators was obtained in [BS3], §6. Now we will show that these esti- 

mates remain valid for the operator A~wv in L2(~;  e 2t) as well. 

Consider the space 

7-/1 = 7-/1(~) = {g • Htloc(~t): g(0) = 0,/~t  tg'I2dt < oo}. 

This is a Hilbert space with respect to the metric form fra Ig'l 2dt; due to the 

classical Hardy inequality, the integral f~([g'i 2 + t-21gl2)dt defines an equivalent 

metric in 7/1. Consider the quadratic functional f~  W[g[2dt and denote by Mw 
the self-adjoint operator in 7-/1 generated by this functional. In [BS3], §6, the 

problem of estimating n(A; Mw) was analyzed (as a specific case d = ~ = 1 of a 

more general problem). A scale of estimates for n(A; Mw) was presented in an 

equivalent form, in Theorem 6.1. 

In particular, for any given q > ½ a sharp class of weight functions W was 

described guaranteeing the behavior n(A; Mw) = O(A-q). For the corresponding 

Schrhdinger operator Aaw this implies (due to (40)) the order N(O;Aaw) = 

O(aq). Clearly we need here such an estimate with q = 1 as the first term on 

the right hand side of (45) has just this order of growth. 
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PROPOSITION 4: 

and 

We present an accurate formulation of the result we need. With a given po- 

tential W > 0 we associate the numerical sequence 

v(w) = {re(w)},  i • ~: re(w) = f2,_1<1+1<2, [t lW(t)dt .  

Suppose that 71(W) • gLw. Then the operator Mw is compact 

(50) n(A; Mw) < C5o~X-lll~(W)lll,~. 

It is a little bit more convenient for us to deal with the sequences 

~/+(W) -- {7/~(W)}, i • 2Z: o~(W) = [ [tlW(t)dt 
./2 i - x < + t < 2 1  

than with the initial sequence r/(W). It follows from (50) that 

(51) n(A; Mw) <_ c51A-I(lI~+(W)IlI,~ + II~-(W)lll,~). 

(The constant factor changes because I1" II1,~ is a quasinorm but not a norm.) 

For the potential Wv introduced by (48), we have 

__1 ~ V ( x ) e n l x l d x  ~ ( W v )  = 2+ ~'-'<lxt<o~' 

1 f~ V(x)lgn[x[ldx. 
~ ( W v )  = ~ -~'<1x1<o -~'-1 

Thus, 

1 

(52) ~+(Wv) = ~ + ( v )  , i > o 

(recall that the numbers v~(V) were defined by (28)). Besides, by (30) 

II~-(Wv)lll,~ + II{~,+(wv)}i<_oll,,~ < ~ ( w v )  + ~ m + ( W v )  
iEZ i_<0 

(53) 1/+ 
= - -  V(x)lgnJxJldx = v o W ) .  

21r I<~ 

These calculations show that the conditions of Proposition 4 are satisfied for the 

potential Wv provided the assumptions of Theorem 3 are fulfilled for V, and 

therefore 

(54) n(A; Mwv) < ~ ( v o ( V )  + [[v(V)llt,w) • 
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Consider now the quadratic form (49) on the domain X0 = {g E X: g(0) = 0}. 

Note that 

(55) d im(X/Xo)  = 1. 

It is easy to see that the completion of Xo in the metric given by f ~  Ig'12dt 

coincides with 7-I 1. Applying Proposition 3 (with a[g] = f ]g'[2dt, d = Xo, 

cl = 7-l 1, big] = f Wy[g[2dt), we conclude that on X0 the quadratic form (49) is 

bounded from below and closed in the space L2(R, e2t). For the corresponding 

self-adjoint operator, say, A~wv,  the following estimate flows out from (40) and 

(54): 

N(O;~kaWv) < Chlo¢(v0(V ) -{-IIv(V)lll,w). 
-- 27r 

This, together with (55), implies an estimate for the operator A (°)" ~U" 

(56) 
N(0; A(°y ) ) =N(O;A~wv)  <_ 1 + N(O;A~wv)  

< 1 + -~_lc~(uo(V) + [[u(V)l[1,~, ) . 

Now the required estimate (31), with C31 _< 2C46 + ~'-1C51, follows directly from 

(45), (47), (56) and (29). | 

4. Commentaries and concluding remarks 

Let us compare Theorems 2 and 3 with the relevant results for d ~ 2. It is well 

known that the lowest possible order of growth for N ( - 7 ;  A~v),  ~ >_ O, in the 

d-dimensional case is 

(57) N ( - ~ ;  A , v )  = O(ad/2) ,  a ~. ~ .  

We call regular any estimate of N ( - 7 ;  A~v) giving just this order of growth. 

The regular estimate for d > 3, ~' = 0, was first obtained by Rozenblum [R1]: 

(58) N ( 0 ; A , v )  <_ C(d)~ d/2 f vd/2dx , V(~ > 0 ,  d >_ 3. 
JR d 

Unaware of Rozenblum's paper, Simon IS1] obtained, also for d > 3, some regular 

estimate for a more restricted class of potentials V. The inequality (58) was stated 

in [S1] as a conjecture. Then it was justified in [C], ILl], by methods essentially 

different from each other and also from the original method of [R1]. 
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It turns out that the estimate (58) is sharp both in (~ and in function classes 

for V: it was proved in JR1] that if V E LIjoc(Ftd), d > 3, and (57) takes place 

for 7 = 9, then V E Ld/2. The estimate for " />  0 following from (58) and from 

the obvious inequality N ( - ~ ;  A,~v) <_ N(0; A,~v) turns out also to be sharp both 

in a and V. 

In contrast to the case d >_ 3, for d = 1 the regular estimates for ~ > 0 and 

~/= 0 substantially differ from each other. Deno te / / (h )  = [(i - 1)h, ih], i E 2~, 
h > 0, and ~i = {x • ~ :  2 i-1 ~ Ixl ~_ 2i}, i > 0. Then for d = 1 

N(-~/;A~v) <_ Ca½ ~-~([ Ydx)½ , a , 7  > 0; (59) 
iEZ~ Jli(~-l) 

(60) N(O;Aav) <_ 1 +Ca½((//1Vdx)½ + i~(/y~ IxIV(x)dx)½) , a > O. 

So, some resemblance exists between the estimates (25) and (59) concerning the 

case ~ > 0. For ~/ = 0, a significant difference between the estimates (31) and 

(60) arises, due to the presence of the term I[v(V)lll,w in (31). Note that  the 

appearance of an additive constant in (31) and (60) is unavoidable because A = 0 

is the resonance point for the one- and two-dimensional Laplacian. The estimate 

(59) was obtained in [SB] and (60) in [BS3]. Both estimates are sharp in a and 

"almost sharp" in function classes for V; namely, suppose that for a fixed ~/> 0, 

N(-% A,~v) = O(a½). Then it is easy to show that the sequence of integrals 

appearing in (59) (for ~ > 0) or in (60) (for ~ = 0) has to belong to the "weak 

~½-space" ~½,~. To check it, one can use the same arguments as in the proofs of 

Theorems 5.2 and 6.2 of [BS3]. So, the difference between the function classes 

involved in (59) and (60) and the sharp ones guaranteeing the regular estimate 

(57) for d = 1, is no greater than the difference between g½ and g½,~. 

Our estimates (25) and (31) for d = 2 are also sharp in a but it is much more 

difficult to find out whether they are sharp in function classes as well. A complete 

description of the class Md of weights guaranteeing the boundedness in Hi(Q) 
of the quadratic functional fq Viul2dx, Q = Qd, was given by Maz'ya (see [M], 

No. 2.3.3). The sharpness of our starting spectral estimate - Theorem 4 - would 

mean that if V e M2, the operator TQ2,v is compact and n(A; TQ2,v) = O(A-1), 

then V E LB(Q2). It is not quite clear at the moment whether Theorem 4 is 

sharp in such a "strong" form. However, it follows from the result of [HMT] that 
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Theorem 4 can not be refined in terms of Orlicz spaces. Note that if we suppose 

that Theorem 4 is sharp, then Theorem 2 is "almost sharp" in the same sense as 

the estimate (59). 

The problem of the sharpness of the estimate (31) is complicated by the pres- 

ence of two terms II#(V)II 1, IIv(V)II 1,,o of a quite different nature on its right hand 

side. The last term must be present in any sharp estimate (possibly in some im- 

plicit form) because it corresponds to the spectrum of an operator generated by 

the quadratic form (24) restricted to a subspace. It was shown in [BS3], Theorem 

6.1, that the condition of Proposition 4 is not only sufficient, but also necessary 

to guarantee the order n(A; Mw) = O(A-1), A --* +0. But it may turn out that  

the estimate (46) is not sharp. Indeed, the passage from G1 to ~-~i @/?/1(~i), used 

in the proof of Corollary 1 ~, seems to be crude. 

The passage from the estimate (31) to (32) (after the formulation of Theorem 

3) was based on the inequality (30). A more direct way to obtain (32) could be 

used instead: namely, the estimate 

N(0; A(°)y) < 1 + a/ItnlxllY(x)dx 

is a straightforward consequence of the well known Bargmann estimate (see e.g. 

[RS]) for the 1-dimensional SchrSdinger operators. 

We followed the approach proposed in [R1], [R2] (or, to be more precise, its 

simplified version given in [BS2]) when proving Theorem 1. The use of Fourier 

series with respect to ~ in the preparatory part of the proof of Theorem 3 was 

borrowed from the paper by Egorov and Kondrattev [EK]. They used Fourier 

series in a somewhat different way and did not get any regular estimates for 

N(O;A~v). 
It may happen that the integral in (58) (for d _> 3) diverges, or the quantities 

appearing in (25), (31) (for d = 2) and (59), (60) (for d -- 1) are equal to c~, 

but nevertheless the negative spectrum of A~v is discrete. Then by necessity 

N ( - ~ ;  A~v) has a non-regular order of growth. These cases are also of some 

interest for applications. In particular, Proposition 4 concerns just one of such 

cases. The paper [BS3] was devoted to the systematic investigation of "interme- 

diate" estimates of this type. Similar results can also be obtained for d = 2 using 

Theorems 2 and 3. 

Among other possible extensions of the results presented, the applications to 

the spectral estimates for the higher order PDE must be mentioned first. A 
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s ta tement  similar to Theorem 2 for the operator ( - A )  e - a V  on Nd, 2~ = d, 

can be easily obtained by the same approach.  However one meets with some 

additional difficulties when trying to extend the result of Theorem 3. We are 

going to consider these and some other related problems in a separate paper. 
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